Dementia Today.net

Site updated at Wednesday, 22 June 2016

Living with Dementia

Scientists create mice with a major genetic cause of ALS and FTD

  • - Dementia News
  • May 22, 2015
  • Comments
  • Viewed: 0
Tags: | amyotrophic lateral sclerosis | frontotemporal dementia |

Scientists at Mayo Clinic, Jacksonville, Florida created a novel mouse that exhibits the symptoms and neurodegeneration associated with the most common genetic forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS, Lou Gehrig’s disease), both of which are caused by a mutation in the a gene called C9ORF72. The study was partially funded by the National Institutes of Health and published in the journal Science.

More than 30,000 Americans live with ALS, which destroys nerves that control essential movements, including speaking, walking, breathing and swallowing. After Alzheimer’s disease, FTD is the most common form of early onset dementia. It is characterized by changes in personality, behavior and language due to loss of neurons in the brain’s frontal and temporal lobes. Patients with mutations in the chromosome 9 open reading frame 72 (C9ORF72) gene have all or some symptoms associated with both disorders.

Our mouse model exhibits the pathologies and symptoms of ALS and FTD seen in patients with the C9ORF72 mutation,” said the study’s lead author, Leonard Petrucelli, Ph.D., chair and Ralph and Ruth Abrams Professor of the Department of Neuroscience at Mayo Clinic, and a senior author of the study. “These mice could greatly improve our understanding of ALS and FTD and hasten the development of effective treatments.”

To create the model, Ms. Jeannie Chew, a Mayo Graduate School student and member of Dr. Petrucelli’s team, injected the brains of newborn mice with a disease-causing version of the C9ORF72 gene. As the mice aged, they became hyperactive, anxious, and antisocial, in addition to having problems with movement that mirrored patient symptoms. The brains of the mice were smaller than normal and had fewer neurons in areas that controlled the affected behaviors. The scientists also found that the mouse brains had key hallmarks of the disorders, including toxic clusters of ribonucleic acids (RNA) and TDP-43, a protein that has long been known to go awry in the majority of ALS and FTD cases.

“This is a significant advancement for the field. Scientists have been trying to create mice that accurately mimic the pathologies associated with these forms of ALS and FTD,” said Margaret Sutherland, Ph.D., program director, the National Institute of Neurological Disorders and Stroke, part of NIH. “This mouse model will be a valuable tool for developing therapies for these devastating disorders.”

The C9ORF72 gene is encoded by repeating strings of six DNA molecules. Disease-causing C9ORF72 mutations make the strings excessively long which leads to the accumulation of RNA that either cluster into structures, called foci, or cause the production of abnormal c9RAN proteins in the brain and spinal cord of patients. The scientists found both in the brains of the mice. They also found clumps, or inclusions, of TDP-43 protein which is another pathological hallmark found in patients with the C9ORF72 mutation.

“Finding TDP-43 in these mice was unexpected” Dr. Petrucelli said. “We don’t yet know how foci and c9RAN proteins are linked to TDP-43 abnormalities, but with our new animal model, we now have a way to find out.”

Dr. Petrucelli and his team think these results are an important step in the development of therapies for these forms of ALS and FTD and other neurodegenerative disorders.

###

This work was supported by grants from NIH (NS089979, NS084528, NS079807, NS088689, NS063964, NS077402, NS084974, AG016574, ES20395), Department of Defense (ALSRP AL130125), Mayo Clinic Foundation, Mayo Clinic Center for Regenerative Medicine, Mayo Graduate School, ALS Association, Robert Packard Center for ALS Research at Johns Hopkins, Target ALS and Alzheimer’s Association (NIRP-14-304425, NIRP-12-259289).

References: Chew et al. “C9ORF72 Repeat Expansions in Mice Cause TDP-43 Pathology, Neuronal Loss and Behavioral Deficits,” Science, May 14, 2015. DOI: 10.1126/science.aaa9344

###

The NINDS is the nation’s leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases.

###

Christopher G. Thomas
.(JavaScript must be enabled to view this email address)
301-496-5751

NIH/National Institute of Neurological Disorders and Stroke

Journal
  Science

Post a comment [ + Comment here + ]

There are no comments for this entry yet. [ + Comment here + ]




Comment
Your details

* Required field


Please enter the word you see in the image below:

Comments are moderated by our editors, so there may be a delay between submission and publication of your comment. Offensive or abusive comments will not be published.

Alzheimer’s Disease

pd with dementia1 - beta amyloid protein1 - lewy body1 - sleep tied to alzheimer's1 - alzheimer treatment1 - early dementia1 - antipsychotics1 - stages of atherosclerosis1 - dopaminergic neurons1 - progression of parkinson's1 - trichloroethylene1 - causes of dementia1 - functional activation studies1 - apoe-e4 gene1 - methamphetamine1 - aphasia4 - mood swings1 - single-infarct dementia1 - aβ421 - social withdrawal1 - confabulatory euphoria1 - plaque in alzheimer's disease1 - blood sugar3 - senility1 - physical reality exercises1 - mri2 - protein amyloid beta1 - cardiovascular risk factors1 - amyloid beta 421 - cases of parkinson's1 -